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INTRODUCTION

Developing flow control strategies has been an important

effort in the last decades to avoid separation of boundary lay-

ers mainly for aerodynamic gains. Active flow control with

fluidic actuators is nowadays a well-known solution to remove

or reduce significantly the separation. Pulsed actuation has

been particularly studied as a technique using less flow rate

with similar performances as continuous blowing [3, 5, 6, 8]. In

order to increase the control performances (precision, dynam-

ics, resistance to flow perturbations...), feedback closed-loop

control can be chosen [1, 9].

The present study addresses open-loop transient character-

ization and closed-loop control of a mostly two-dimensional

turbulent boundary layer with massive separation under a

pulsed fluidic actuation.

EXPERIMENTAL SETUP

The experiments are conducted in the LML boundary layer

wind tunnel in Lille, France. A two-dimensional ramp is used

in the wind-tunnel to generate a mild adverse pressure gradi-

ent and force the separation of the incoming boundary layer

(fig. 1). At a wind-tunnel velocity of U∞ = 10 m/s, the

boundary layer thickness is δ = 0.19 m and the Reynolds num-

ber Reθ based on the momentum thickness θ just before the

flap leading edge is up to 12600. The separation is massive

and the separation length is Lsep = 0.59 m, using the backflow

coefficient χ criteria [4].

The control is realized with 22 round fluidic jets distributed

in the spanwise direction upstream of the separation line. The

configuration of the jets generates co-rotating vortices which

re-energise the near-wall region, and force the flow reattach-

ment, depending on the actuation parameters of the jets. More

details on the experimental setup can be found in [2, 7].
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Figure 1: 2D-sketch of the AVERT ramp used for the experi-

ments.

OPEN-LOOP EXPERIMENTS

The transition between the separated and attached flows

is studied in details. Simultaneous velocity and friction gain

measurements are performed during this transition. Phase-

averaged velocity fields are obtained from 2D-2C PIV oriented

in the streamwise direction and normal to the wall (fig. 2).

Hot-film sensors placed along the separation region provide in-

stantaneous measurements representative of the skin-friction.

These friction gain measurements allow firstly to have time-

resolved informations on the transition, not accessible with
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Figure 2: 3D-sketch of the AVERT ramp and 2D-2D PIV

setup used in the study.

low-speed PIV, and then to use these sensors as real-time in-

puts for the closed-loop experiments. Continuous and pulsed

actuations are considered here and the effect of main actua-

tion parameters (velocity ratio VR, frequency f , duty cycle

DC) on the control efficiency is studied.

These informations, particularly from the hot-film sensors,

are considered as representative of the flow state during the

transition. To design efficient closed-loop control, accurate

models of transient dynamics, particularly the reattachment

process, are necessary. Characteristic times of the transition

(rising time, delays) are firstly obtained by fitting a first-order

law on the hot-film sensors responses. For a better approxima-

tion of the flow dynamics during the reattachment, advanced

models are also considered, based for example on the separa-

tion length or using input-output polynomial models.

CLOSED-LOOP EXPERIMENTS

Based on these models, closed-loop control had been real-

ized. The experimental setup, specific for closed-loop control,

is presented in figure 3. Instantaneous friction gain from hot-

film sensors is the measured output. The duty cycle for the

jets pulsed signal is the control input generated with these in-

formations. Several closed-loop algorithms had been tested.

Feedback laws based on P, PI and PID algorithms have firstly

been performed. The controller objective is to minimize the

difference between the hot-film sensor signal and a target de-

fined by the users. The behaviour and performances (mainly,

small overshoot and high response speed) have been modified

by means of an adequate tuning of the parameters (P, I and

D gains).

Optimal LQR control (Linear-Quadratic Regulation) is also

considered. The actuation cost can now be taken into account

in the controller through the minimization of a cost function.

The influence of sensors noise on the closed-loop control per-

formances can also be reduced by using estimators. Kalman

filters are implemented in order to estimate the separation

length from informations obtained from hot-film sensors and

the duty cycle. A closed-loop control (named LQG - Linear-

Quadratic Gaussian) is realized using this estimation.

Unavoidably, uncertainties of the controlled system can ap-

pear. Dynamical models are not perfectly defined and the

incoming flow can be perturbed. Consequently, control per-

formances can be deteriorated under these uncertainties. A

robust control based on H∞ synthesis is realized here in order

to reduce the influence of these uncertainties on the control

performance. The objective is to maintain the control ro-

bustness for a system submitted to random perturbations and

system uncertainties. The robustness of few controllers was

tested experimentally with perturbing the incoming bound-

ary layer before the leading edge.

Figure 3: Experimental setup for closed-loop experiments.
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