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ABSTRACT

Full-domain, linear feedback control of fully-developed tur-

bulent channel flow at Reτ ≤ 400 is an effective method to

attenuate turbulent channel flow such that it is relaminarised

(figure 1). The passivity-based control approach is adopted

and explained by the conservative characteristics of the non-

linear terms in the Navier-Stokes equations with respect to

the disturbance energy [5]. The implementation and test-

ing of a control algorithm are performed in a plane Poiseuille

channel flow using a direct numerical simulation (DNS). A

modified version of Channelflow-1.4.2 [2], available under the

GNU General Public License, is employed.

Figure 1: Instantaneous isosurfaces of λ2 in relaminarising

turbulent channel flow at Reτ = 400: t = 0, t = 10, and

t = 40, respectively.

Firstly, the linear feedback control operating on the wall-

normal velocity fluctuation is restricted to low wavenumbers

which correspond to the large energy-containing eddies, while

the significant viscous effects are sufficient to dissipate energy

at the highest wavenumbers. Then, the restriction of control is

progressively increased to higher wavenumbers until the mean

pressure gradient uninterruptedly decreases (figure 2).
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Figure 2: Temporal evolution of the mean pressure gradient

for the uncontrolled and controlled flows at Reτ = 180 and

400.

Figure 2 shows that the minimum restricted streamwise

and spanwise wavenumbers without losing control (kx, kz)min
increase with increasing Reτ , as would be expected from a

broader range of scales at higher Reynolds numbers. The

minimum required spanwise wavelength resolution without

losing control

λ+
z,min =

(
2π

kz,min

)(
uτ

ν

)
(1)

is calculated at each friction Reynolds number, where the value

of the friction velocity uτ at time t = 0 is used. It reveals that

λ+
z,min is approximately equal to 125 and it is invariant with

the friction Reynolds number (figure 3).
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Figure 3: The minimum required spanwise wavelength res-

olution without losing control for the controlled flows at

Reτ = 80, 100, 180, 300, and 400.
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Furthermore, it shows that in the short term the forcing

peak is located at y+ ≈ 25 (figure 4) which corresponds to the

location of the maximum mean-square pressure gradient of the

fully-developed unmanipulated turbulent channel flow (figure

5). This could be understood via the mean-square acceleration

equation [1]:
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Batchelor and Townsend (1956) have shown that the viscous

diffusion term is negligible at sufficiently high Reynolds

numbers where the hypothesis of local isotropy is valid.

Thus, the mean-square acceleration of a fluid particle at high

Reynolds numbers is driven by the mean-square pressure

gradient and the mean-square viscous force,

(
Dui

Dt

)2

≈
(
∂p

∂xi

)2

+ ν2

(
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j

)2

. (3)

They have further suggested that the mean-square pressure

gradient is significantly larger than the mean-square viscous

force and

(
∂p

∂xi

)2

≈ 20ν2

(
∂2ui

∂x2
j

)2

. (4)

Consequently, it is likely that the controller works against the

mean-square pressure gradient over time and the near-wall mo-

tion is driven by prolonged viscous periods periodically pulsed

by the pressure fluctuations.
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Figure 4: Mean-square forcing
〈
f2
〉
(y, t) of the linear control

restricted to (kx, kz) ≤ 20 for the controlled flow at Reτ =

400.
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Figure 5: Mean-square pressure gradient and mean-square

viscous force of fully-developed turbulent channel flow at

Reτ = 400, according to equation 3.

Further investigation on the rate of change of the total

perturbation energy dE/dt over a closed domain Ω is carried

out using the Reynolds-Orr equation, given by

dE

dt
= −

∮

Ω

(
uvU

′
L(y) +

1

Re

∂ui

∂xj

∂ui

∂xj

)
dΩ = PE +DE . (5)

Clearly, the linear control operates via vU ′ (U ′ = ∂U/∂y)

(figure 6). The effectiveness of the linear control is qualita-

tively explained by Landahl’s theory for timescales [4], in that

the control proceeds via the shear interaction timescale which

is significantly shorter than both the nonlinear and viscous

timescales for the turbulence. Over a short period of time

for which the linear control is in effect, the longer nonlinear

(turbulence) timescale is not significant.
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Figure 6: The temporal evolution of the rate of production

PE and the dissipation rate DE of the perturbation energy

for turbulent channel flow at Reτ = 400 subject to the linear

control restricted to (kx, kz) ≤ 20

Lastly, the response of the rapid (linear) and slow (nonlin-

ear) pressure fluctuations to the linear control are investgated

using the Green’s function representations [3]. It demonstrates

that the linear control operates via the rapid (linear) source

term of the Poisson equation for pressure fluctuations, 2U ′ ∂v
∂x

and the shear interaction timescale is effective as a result of

the rapid source term of the Poisson equation for pressure

fluctuations.
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