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INTRODUCTION

Superhydrophobic coatings are becoming an increasingly

popular technique for the reduction of drag in applications in-

volving the flow of liquids over solid surfaces, for a wide range

of Reynolds number, from laminar to turbulent conditions.

Such coatings work by the interposition of a gas layer between

the liquid and the solid wall, trapped by distributed micro-

scopic roughness elements present at the wall; over the gas

layer the liquid can flow with negligible friction. Here we are

concerned with the initial development stages of the laminar-

turbulent transition for the flow of a liquid in a micro-channel,

with one or both walls characterized by a periodic, micro-

patterned topography. The surface topography is rendered in

the equations by a Navier-slip condition [3, 1], which mim-

ics the alternating no-slip/no-shear boundary condition which

applies when the air-liquid interface is underformed (i.e. in-

finite surface tension). Linear stability results are presented

for both modal and nonmodal amplification of disturbances,

for micro-ridges aligned, orthogonal, or at an angle, to the

driving pressure gradient. Finally, a new weakly nonlinear ap-

proach [4] is used to find threshold amplitudes for the onset

of transition.

PROBLEM FORMULATION

Ridges form an anisotropic texture, and a slip tensor Λ in

the plane of the walls (x, z) can be defined as

Λ = Q

[
λ‖ 0

0 λ⊥

]
QT , with Q =

[
cos θ − sin θ

sin θ cos θ

]
(1)

where λ‖ and λ⊥ are the Navier slip lengths along and or-

thogonal to the mean flow. In the special case of an isotropic

superhydrophobic surface λ‖ = λ⊥; for the case of micro-

ridges it is λ‖ = 2λ⊥ [3, 1]. By allowing for θ (angle between

the ridges and the x-axis) to be different from zero, we can

align the microstructures at any angle with respect to the

mean pressure gradient. We assume that the channel has

thickness 2l and use l to normalize distances; the bulk speed

is employed to scale the velocity. The dimensionless boundary

conditions at the two walls read[
u(x,−1, z)

w(x,−1, z)

]
= Λ

∂

∂y

[
u(x,−1, z)

w(x,−1, z)

]
, (2)

[
u(x, 1, z)

w(x, 1, z)

]
= −Λ

∂

∂y

[
u(x, 1, z)

w(x, 1, z)

]
, (3)

in the case of both walls being textured, plus vanishing con-

ditions for the vertical velocity component v at the two walls.

If one of the two walls is not superhydrophobic, the condition

there is simply u = 0.

It is interesting to observe that, when θ differs from 0◦

and 90◦, a small component of the base flow orthogonal to

the mean pressure gradient is created in the channel [5]; when

both walls are superhydrophobic the base flow is

U(y) = −3
y2 − [λ‖(1 + cos2 θ) + 1]

2 + 3[λ‖(1 + cos2 θ)]
, (4)

W (y) = 3
λ‖ sin θ cos θ

2 + 3[λ‖(1 + cos2 θ)]
. (5)

An example of base flow for λ‖ = 0.1 is displayed in figure

1 for two values of θ; the spanwise component W is constant

and positive for θ = 45o.
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Figure 1: Streamwise U and spanwise W velocity components

of the base flow when λ‖ = 0.1 for the cases θ = 0◦ (dashed)

and θ = 45◦ (solid).

Linear stability equations are derived by introducing

into the Navier-Stokes equations a flow decomposition

u(x, y, z, t) = (U, 0,W )(y) + εũ(y, t) exp[i(αx + β z)] + c.c.,

where α and β are the streamwise and spanwise wavenumbers,

respectively, and collecting terms of order ε. The theory is ap-

plicable as long as the disturbance wavelength is sufficiently

longer than the spatial periodicity of the ridges.

A modal analysis is performed by assuming a temporal be-

haviour such that ũ(y, t) = û(y) exp(−i ω t), where ω is the

complex angular frequency and ωi > 0 denotes unstable solu-

tions.

The non-modal behaviour is studied by computing the max-

imum finite-time amplification; the initial disturbance velocity
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field, ũ0, is optimal when the gain

G(Re, α, β, T, λ‖, θ) =
e(T )

e(0)
, (6)

is maximized, where

e(t) =
1

2

∫ 1

−1
(ũũ∗ + ṽṽ∗ + w̃w̃∗)dy,

and T is the target time of the optimization. This is conducted

by introducing Lagrange multipliers enforcing the constraints

given by the governing linear equations and the boundary con-

ditions. The adjoint equations are derived using a discrete

approach. We further define

GM (Re, λ‖, θ) = max
∀α,β,T

G,

when G is maximized with respect to wavenumbers (α, β) and

the final time T .

RESULTS

The onset of the instability is studied parametrically by

varying the parameters Re, α, β, T, λ‖ and θ. Results of the

critical Reynolds number as a function of the wave angle,

Φ = tan−1(β/α), from the modal analysis are presented in fig-

ure 2 for two different superhydrophobic coatings on both walls

of the channel. A monotonic increase of the critical Reynolds

number as a function of Φ is found when the micro-ridges are

orthogonal to the mean pressure gradient, showing that the

two-dimensional wave is the least stable one, in accordance

with Squire’s theorem. When θ = 0, on the other hand, the

least stable disturbance, for the given value of λ‖, is three-

dimensional. By way of comparison, the critical Reynolds

number in the no-slip case is 3848, demonstrating the sta-

bilizing effect of the superhydrophobic walls for exponentially

growing disturbances, particularly when the micro-ridges are

aligned with the basic pressure gradient.
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Figure 2: Critical Reynolds number as a function of the wave

angle Φ = tan−1(β/α) for λ‖ = 0.02.

The gain GM obtained from the non-modal analysis is dis-

played as function of λ‖ in figure 3 for Re = 1260 and θ = 0.

Also in this case we consider two identical superhydrophobic

bounding surfaces. The results show that there is a mono-

tonic decrease of the finite-time amplification as the Navier

slip length λ‖ rises. In the case of no-slip walls, the maximum
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Figure 3: Gain GM as a function of λ‖ in the case of θ = 0

and Re = 1260.

gain is 700; it is thus convenient to enhance λ‖ as much as

possible to reduce transient amplification.

It has been known for some time that modal and nonmodal

linear mechanisms are weak indicators of transition to turbu-

lence in plane channel flow. We have thus considered a weakly

nonlinear optimal model capable to describe the feedback oc-

curring between the mean flow and the disturbances, along

the lines of Pralits & Bottaro [4]. Weakly nonlinear optimal

disturbances display a shorter streamwise and a longer span-

wise wavelength than their linear counterparts, over a range

of Reynolds numbers. Threshold values of the initial excita-

tion energy, separating the region of damped waves from that

where disturbances grow without bounds, scale like Re−2.

CONCLUSIONS

A linear and weakly nonlinear analysis of the flow in a chan-

nel with the walls coated with a superhydrophobic material

has been conducted, for the case of surface topography consti-

tuted by micro-ridges with arbitrary alignment. The results

of the linear study are in agreement to and complete those by

Min & Kim [2]. Nonlinear results permit, for the first time, to

identify threshold amplitudes of disturbances provoking tran-

sition for the flow in a micro-channel bound by one or two

superhydrophobic surfaces.
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